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Abstract 

Tropical cyclone rapid intensification (RI) continues to be a problem that eludes operational forecasters.  Recent work in this area 
has revealed the value of applying machine learning techniques to classifying storms as RI or non-RI at 24-hours lead time. 
However, that work showed that differing reanalysis datasets represented the storms in unique ways, offering different 
discrimination capability and unique predictor sets that are important for RI.  The scope of this research is to identify factors
important for RI that are consistent among three reanalysis datasets, as these are likely the fields that will provide the greatest 
discrimination capability.  An S-mode rotated principal component analysis was used to formulate unique patterns within RI and 
non-RI storms, and the resulting RPC scores were used to train a support vector machine classification algorithm that yielded 
binary RI occurrence output.  Base-state meteorological variables (geopotential height, temperature, u and v wind components, 
vertical velocity, and relative humidity) at single horizontal levels were tested individually as predictors for the SVM.  Base-state
fields that were consistently good at discriminating RI events from non-RI events among all three reanalysis datasets were 
deemed most useful for RI classification and will be considered for future forecast applications. 
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1.  Introduction 

Tropical cyclone (hereafter referred to as TC) forecasting continues to be a challenge in operational meteorology.  
TC forecasts consist of two primary forecast modes, track forecasts and intensity forecasts.  Track forecasts are 
improving with continued updates to operational weather forecast models and the advent of the satellite era, yet 
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intensity forecasts continue to demonstrate limited effectiveness, primarily due to the limited understanding of the 
mechanisms driving TC intensification and the inability of weather models to render the important underlying 
thermodynamic processes.  Forecasts of rapid intensification (hereafter referred to as RI), which involve a rapid 
strengthening of the cyclone over a short period of time (typically 24-hours), are of particular concern since most 
moderately strong (Category 2-3) TCs and all Category 4 and 5 storms undergo RI at some point in their life cycle 
[1].  Hence, RI forecasting remains a major forecasting challenge.   

  Initial attempts at forecasting RI in a TC’s life cycle have primarily consisted of statistical approaches (i.e. 
multivariate linear regression [2]).  These methods require prior knowledge of the variables relevant for RI, which 
typically consist of thermodynamic and kinematic fields.  In particular, horizontal wind fields are shown to be 
critical in several kinematic studies on RI [3-5], while other studies reveal the importance of thermodynamic fields 
(mainly moisture and temperature or equivalent potential temperature) for RI [4, 6, 7].  Blends of kinematic and 
thermodynamic quantities are utilized as predictors in the most current operational RI classification model, the 
Statistical Hurricane Intensification Prediction Scheme Rapid Intensification Index (SHIPS-RII [1]).  This model 
utilizes several kinematic variables (vertical wind shear, upper level divergence, potential intensity, and initial 
maximum sustained wind) and thermodynamic variables (low-level relative humidity, ocean heat content, total 
precipitable water, inner-core dry-air), as well as a predictor dealing with persistence (previous 12-hour 
intensification).  It is evident from the literature on this topic that while a blend of kinematic and thermodynamic 
variables is useful, the exact physical mechanisms driving RI are still not well understood. 

Recently, dynamic modeling of the TC environment has improved with the implementation of the Hurricane 
Weather and Research Forecasting (HWRF) model [8].  Recent work [9] showed vast improvements in HWRF’s 
rendering of Hurricane Earl (2010) over previously utilized dynamic models.  Eventually, the forecast skill of 
dynamic models such as HWRF will surpass statistical approaches, but until that time, forecast skill still remains 
sufficiently low to continue consideration of statistical models.  Further, no machine learning techniques have been 
considered for the RI forecast problem, with the exception of [10], which utilized a single reanalysis dataset.     

It is evident from previous work that without a dynamic rendering of the RI process, an optimal suite of 
predictors useful for discriminating RI/non-RI events is essential.  The goal of this project is another look at the 
predictors useful for RI determination using kernel methods.  In particular, three reanalysis datasets’ [11-13] 
renderings of RI and non-RI storms will be formulated on individual base-state meteorological variables with the 
goal of identifying the variables with the greatest discrimination skill.  Section 2 briefly describes the reanalysis 
datasets, while section 3 discusses the methods employed to discriminate RI and non-RI results.  Section 4 shows 
results, while section 5 provides some discussion and conclusions. 

2. Data 

Since large-scale predictors were of interest for this work, reanalysis datasets, which consist of gridded three-
dimensional large-scale representations of the atmosphere, were used.  Three reanalysis datasets were tested, the 
NCEP/NCAR reanalysis dataset (NNRP – 11), the NCEP-DOE Reanalysis II dataset (DOE – 12) and the 20th

century Regional Reanalysis dataset (20th – 13).  Details of each dataset are provided in Table 1.  Since each 
reanalysis dataset was formulated using a unique underlying dynamic modeling system, subtle but often important 
differences in their renderings of the atmosphere exist.  As such, any “best classifying predictors” consistent among 
all reanalysis datasets would likely suggest important variables for discriminating RI and non-RI events.  Six base-
state meteorological fields for all vertical levels up to 100 mb were retained from each reanalysis dataset:  
geopotential height, temperature, u and v wind components, vertical velocity, and relative humidity.  Each of these 
fields has high reliability in each reanalysis dataset, as they are primarily based upon observational data instead of 
model parameterizations, making them useful for the study.   

     Table 1.  Summary of selected reanalysis datasets 

Dataset name Longitude-Latitude Resolution Vertical Levels Years available 

NCEP/NCAR reanalysis (NNRP – 11) 2.5° x 2.5° (144x73) 17 1948-present 

NCEP/DOE reanalysis II (DOE – 12) 2.5° x 2.5° (144x73) 17 1948-present 

20th century reanalysis (20th – 13) 2° x 2° (180x91) 24 1871-present 
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In addition to the required reanalysis datasets, a database of all TCs with an associated RI definition was needed.  
The National Hurricane Center has multiple definitions of RI that are based on 24-hour changes in peak wind gusts 
[1,6].  To ensure a large sample size of RIs, the weakest of the NHC’s criteria (a 25 kt increase of maximum wind 
speed in 24 hours) was selected, yielding a final case set of 158 RI events and 146 non-RI events.  Storm locations 
and intensities were obtained directly from the NHC Atlantic Hurricane database for 1985 to 2009.  All reanalysis 
fields pulled from the datasets listed in Table 1 were centered on the gridpoint nearest the NHC-defined hurricane 
center associated with the lowest mean sea level pressure of the grid (to ensure the fields were centered on the 
reanalysis solution of the storm center, not the NHC solution).  All reanalysis grids were retained at 24 hours prior to 
RI (that is, at the beginning of the RI process).  In the case of multiple occurrences of RI within a storm, the first 
time was used as the valid time, and for non-RI storms, the point of greatest 24 hour wind speed change was deemed 
the valid time (again with the first time being used in the case of ties).   

3. Methodology 

As stated previously, all vertical levels up to 100 mb were retained for the six base-state meteorological variables.  
However, the NNRP and DOE reanalysis datasets only provide humidity information up to 300 mb.  In total, 68 
grids were tested for the DOE and NNRP datasets, while 114 grids were tested for the 20th century reanalysis, owing 
to its different vertical resolution.  Each grid consisted of a subset of datapoints centered on the gridpoint with the 
lowest mean sea level pressure.  For the NNRP and DOE, each grid was 11 x 11 (121 total points), while for the 20th

century reanalysis, each grid was 15 x 15 (225 gridpoints), owing to the different horizontal spatial resolution of the 
datasets (see Table 1).   

Since each dataset had multiple gridpoints per variable and per vertical level, each of which were tested 
individually, a data reduction method was implemented to reduce the high correlation among the gridpoints within 
each horizontal field.  The utility of rotated principal component analysis (RPCA) for data reduction in statistical 
modeling has been seen in many studies [10, 14-16], and as such, this method was selected for reduction of each 
gridded field.  The RPCA methodology was completed by: 

1. Extraction of the horizontal grid of interest, and scaling of the grid through the computation of standard 
anomalies.  Gridpoints were scaled to a mean of 0 and standard deviation of 1 for all times at that point. 

2. Formulation of the correlation matrix on the gridpoint dimension (S-mode [17]), and eigenanalysis of the 
correlation matrix 

3. Truncation of the eigenvectors through North’s test [18] 
4. Calculation of the Varimax-rotated RPC loading matrix [17] from the reduced eigenvector matrix 
5. Calculation of the RPC score matrix (same dimensionality as the number of cases). 

The resulting RPC score values represent a relative match of the actual spatial field observed for that particular 
storm to each of the RPC loadings derived in step 4 of the RPCA methodology described above.  These RPCs were 
used as predictors in the RI/non-RI classification model.  Figures 1 and 2 below show the number of RPCs retained 
for each of the grids for the three reanalysis datasets (Fig. 1) and the variance explained by each configuration (Fig. 
2).  As has been demonstrated in numerous previous studies [10, 14-16], support vector machine (SVM [19]) 
classification schemes provide superior classification performance to more traditional logistic or linear regression 
approaches.  As such, a SVM was used as the classification scheme for this study.  RPC scores were used as inputs 
into the SVM, with a single binary RI/non-RI output selected as the final outcome.  However, SVMs have multiple 
configuration options (see the appendix in [15] for more details on the SVM algorithm), including a cost function, 
which determines the impacts of extreme classifiers, the kernel function, which is responsible for mapping data into 
a nonlinear hyperspace on which the decision hyperplane is constructed, and all associated parameters within the 
kernel functions (polynomial degrees and values of  within the radial basis kernel function).  Theoretically, there 
are an infinite number of possible configurations, but a subset of these configurations was tested in this study.  In 
particular, polynomial kernels with degrees of 2, 3, 4, 5, and ½ were considered, and radial basis functions with 
values of  = 0.05, 0.01, and 0.1 were tested (8 total kernel function configurations).  Additionally, four cost function 
values between 1 and 1000 in log10 units were tested, yielding a total of 32 possible SVM configurations considered.  
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To establish the “best” configuration, the cases were pairwise bootstrap-resampled 500 times with 90% of the cases 
retained for training and the remaining 10% for independent testing.  This approach allowed for the formulation of 
bootstrap confidence intervals on Heidke skill scores (HSS [15]) for each of the 32 possible kernel/cost 
configurations for each grid.  The kernel/cost configuration that yielded the highest median HSS was deemed the 
best of those tested and was retained for that diagnostic variable and vertical level.  A logistic regression was also 
conducted for each grid as a baseline.  Generally speaking, most temperature and vertical velocity grids required 
high costs to get the best results, while the geopotential height fields (which were often the best classifying fields as 
seen below) frequently showed that simple logistic regression outperformed the SVM.  Polynomial kernels of 
varying degrees tended to be the most common “best” configuration in the u and v wind classification fields, and no 
real patterns in the relative humidity SVM configurations emerged.  The resulting best kernel/cost configurations for 
each diagnostic variable grid were retained to compare the performance of each variable.  These results were further 
compared among the three reanalysis datasets to find consistently good classifying diagnostic variables. 

     
   Fig. 1.  Number of RPCs retained for all grids                                                  Fig. 2.  Variance explained by RPCs for each grid 

4. Results 

After completion of the SVM step, the resulting best kernel/cost combination was retained for each of the grids 
for each reanalysis dataset.  The quality of the results was assessed using 95% bootstrap confidence intervals on the 
500 resampled training/testing sets.  The NNRP and DOE (Figs. 3 and 4) yielded surprisingly consistent results, 
suggesting that mid and upper level temperature fields, near surface and upper level geopotential height, and near 
surface relative humidity were the best classifiers of RI/non-RI.  Interestingly, no consistent result between these 
two reanalysis datasets with regards to the kinematic fields (either u or v wind components or vertical velocity) was 
observed.  These results support the work of others [4,6,7] that suggests that a good rendering of the low and upper 
level thermodynamics is critical for identifying RI/non-RI.   Additionally, among the top 10 ranked predictors for 
these two reanalysis datasets, no consistent winner is able to be identified, and skill scores remain quite poor, with 
medians near 0.2 for all top 10 ranked sets.  Of particular concern are the lower confidence levels in all 68 predictors 
for both reanalysis datasets, which overlap the 0 skill line.  This is particularly problematic since 0 skill suggests that 
simple climatological forecasts may be better classifiers of RI/non-RI than the diagnostic variable in some instances.   

The 20th century reanalysis (Fig. 5) results showed somewhat inconsistent results with the NNRP and DOE, as 
five of the top 10 performing grids were kinematic fields.  The zonal (east-west) component of the winds were good 
classifiers in the 20th century reanalysis, possibly due to the increased horizontal resolution in the dataset.  
Additionally, 200 mb vertical velocity yielded a lower confidence limit that was greater than 0, an improvement 
over the NNRP and DOE results.  The major differences between the reanalysis datasets arise more due to the 
horizontal resolution than the model underlying the formulation of each dataset, owing to the consistency of the 
results between the DOE and the NNRP.   
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Fig. 3.  All SVM results ranked in top 10 of median HSS for                    Fig. 4.  Same as Fig. 3, but for DOE. 
            the NNRP.  The variable name and vertical level are  
            indicated under each plot. 

In comparing the top ranked predictor for each of the three datasets (Fig. 6), it is clear that the 20th century 
reanalysis is yielding improved results over the DOE or NNRP.   The median HSS for the 20th century reanalysis is 
roughly 30% improved over the other two reanalysis datasets (0.29 for 20th, 0.22 for NNRP and DOE).  The spread 
of the HSS results is consistent throughout the three best performing datasets as well (standard deviation of the HSS 
bootstrap replicates of 0.161 for the NNRP, 0.163 for the DOE, and 0.164 for the 20th century reanalysis).  While 
none of the observed differences are statistically significantly different, the upward shift in the replicate distribution 
for the 20th century reanalysis, and the consistency in the replicate spread, suggests better SVM classification 
performance when using the 20th century reanalysis as a baseline.  Interestingly, all three datasets had the highest 
median HSS with a lower-level thermodynamic variable (700 mb temperature for the NNRP, 1000 mb relative 
humidity for the DOE, and 800 mb geopotential height for the 20th century reanalysis).   

5. Discussion/Conclusions 

It is clear based on the plethora of previous work on the topic that forecasting TC RI remains a major challenge.  
Since dynamic model renderings of TC intensification processes remain inadequate, further refinement of statistical 
approaches is necessary to ensure the best possible forecast quality.  In this study, kernel methods were utilized to 
formulate a SVM classification scheme on individual base-state diagnostic variables, including winds, temperature, 
moisture, and geopotential height.  The NNRP/DOE results clearly demonstrated that thermodynamic variables are 
more important than kinematic variables in diagnosing RI, and that more effort should be focused on improved 
thermodynamic renderings of RI processes.  However, the 20th century reanalysis results were quite different, 
suggesting the kinematic fields are equally important.  Regardless of this discrepancy, the best performing predictor 
for each dataset was a thermodynamic quantity.  Unfortunately, the classification skill of the SVMs trained with 
these variables remained inadequate (roughly 0.22 for the best NNRP/DOE field, 0.29 for the best 20th century 
reanalysis), even demonstrating negative skill in some instances.  The contribution of the RPCA to these differences 
is likely minimal due to the inconsistent results in the variance explained for each best field (85% for NNRP, 54% 
for DOE, and 97% for the 20th century). Regardless, this study was able to define important predictors more 
conclusively than previous work, which should improve predictions of RI onset in future studies. 

Future work on this topic will involve implementing nonlinear kernel PCA as a data reduction technique, which 
is more complex due to the numerous configurations of the kernel matrix.  Derived fields, such as vertical wind 
shear, lapse rates, divergence, and equivalent potential temperature will be considered as classifiers as well.  
Additionally, this work will need to be implemented using forecast data as opposed to reanalysis fields in order for it 
to become useful for forecast applications.  
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Fig. 5.  Same as Fig. 3, but for 20th century reanalysis                     Fig. 6.  Top performing predictor for each reanalysis dataset.  The 
                                                                                                    solid line is passing through the highest median. 
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